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Application of Exploratory Data Analyses opens a new perspective in morphology-
based alpha-taxonomy of eusocial organisms 
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Abstract 

This article introduces a new application of the Exploratory Data Analysis (EDA) algorithms Ward's method, Unweighted 
Pair Group Method with Arithmetic Mean (UPGMA), K-Means clustering, and a combination of Non-Metric Multidimen-
sional Scaling and K-Means clustering (NMDS-K-Means) for hypothesis formation in morphology-based alpha-taxonomy 
of ants. The script is written in R and freely available at: http://sourceforge.net/projects/agnesclustering/. The characte-
ristic feature of the new approach is an unconventional application of linear discriminant analysis (LDA): No species 
hypothesis is imposed. Instead each nest sample, composed of individual ant workers, is treated as a separate class. 
This creates a multidimensional distance matrix between group centroids of nest samples as input data for the clustering 
methods. We mark the new method with the prefix "NC" (Nest Centroid). The performance of NC-Ward, NC-UPGMA, 
NC-K-Means clustering, and a combination of Non-Metric Multidimensional Scaling and K-Means clustering (NC-
NMDS-K-Means) was comparatively tested in 48 examples with multiple morphological character sets of 74 cryptic 
species of 13 ant genera. Data sets were selected specifically on the criteria that the EDA methods are likely to lead to 
errors – i.e., for the condition that any character under consideration overlapped interspecifically in bivariate plots against 
body size. Morphospecies hypotheses were formed through interaction between EDA and a confirmative linear discri-
minant analysis (LDA) in which samples with disagreements between the primary species hypotheses and EDA classifica-
tion were set as wild-cards. Subsequent Advanced Species Hypotheses were formed by aligning Morphospecies Hypo-
theses with biological and genetic data. Over all 48 cases and all four methods using nest centroid data generated by a 
hypothesis-free LDA, the mean deviation of clustering from Advanced Species Hypotheses was 5.25% in NC-
UPGMA, 2.58% in NC-NMDS-K-Means, 2.40% in NC-Ward and 2.09% in NC-K-Means. A dramatically larger mean 
error of 21.50% was observed if K-Means used nest-sample means of morphological characters instead of centroid data. 
This indicates that having first run a hypothesis-free LDA was a deciding factor for the unexpectedly high performance 
of the new clustering algorithms. Advantages and disadvantages of the EDA methods are discussed. A combination of 
NC-Ward, NC-UPGMA and NC-K-Means clustering is recommended as the most conclusive and most rapidly work-
ing routine for the exploration of cryptic species. The method is applicable to any group of eusocial organisms such as 
ants, bees, wasps, termites, gall-making aphids, thrips, weevils, pistol shrimps, and mole rats. In general, NC-Clustering 
can be applied for all cohesive systems providing repeats of definitely conspecific elements – e.g., leaves and flowers of 
the same plant, a coral "head" of genetically identical polyps, an aphid colony produced by a single fundatrix. It can also 
be used to monitor intraspecific zoogeographical structures. However, the clustering methods presented did not appear to 
be good tools for the investigation of hybrid scenarios, for which we recommend alternative methods.  
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Introduction – morphology-based alpha-taxonomy,  
nomenclature and species delimitation problems 
The basic function and challenge of alpha taxonomy is to 
recognize relevant entities of biodiversity – i.e., to deter-
mine boundaries between species or subspecific popula-
tions and improve their delimitation. Integrative taxonomy 
– as a combined view of morphology, genetics and sur-
face biochemistry – undoubtedly offers the most powerful 
solution to difficult problems of ant taxonomy (CREMER & 

al. 2008, ROSS & al. 2010, SCHLICK-STEINER & al. 2010, 
SEPPÄ & al. 2011, GOTZEK & al. 2012, WARD & al. 2012). 
However, since an integrative taxonomy combining these 
disciplines is costly in money and manpower and requires 
the best conservation status of the material under investiga-
tion, it is of practical importance constantly to improve the 
methodology of the backbone-discipline of biodiversity 



 2 

research: morphology-based alpha-taxonomy (MOBAT). 
SCHLICK-STEINER & al. (2007) emphasized the leading 
function of MOBAT in biodiversity research, because many 
practical situations (degrading storage conditions, histori-
cal, subfossil or fossil vouchers) exclude access to genetic 
or biochemical information and because only this disci-
pline (not molecular genetics) can link entomological spe-
cies delimitation with Zoological Nomenclature (STEINER 
& al. 2009, BAGHERIAN & al. 2012). We present here a new 
tool that improves the accuracy and reliability of the re-
sults produced by MOBAT data analysis considerably.  

In conventional MOBAT approaches, taxonomists use 
observable morphological characters intuitively to form hy-
pothetical groups of objects with similar characteristics. 
These groups are assumed to represent either different spe-
cies or well-differentiated populations within a species' 
metapopulation. This subjective grouping works well when 
the differences between the entities are obvious but it is like-
ly to contain errors or be completely wrong if there is 
data overlap in any of the characters under consideration. 
Such cases, in which a single fully discriminative morpho-
logical key character is missing, are common when cryptic 
species are involved. The frequency of these was estimated 
in three ant genera subject to a thorough analysis as ap-
proximately 46% of about 94 Palaearctic Lasius species, 
43% of about 67 Palaearctic Formica species, and approxi-
mately 52% of about 77 Cardiocondyla species world-
wide (SEIFERT 2009). As comparably high ratios are pre-
dicted for other genera too, the cryptic species problem is 
expected to occur everywhere in ant taxonomy (FERREIRA 
& al. 2010). The problem is particularly serious in the main 
field of alpha-taxonomy: determination of the weakly dif-
ferentiated worker caste. One manner of treating this iden-
tification problem is numeric recording of multiple char-
acters followed by a confirmatory (= hypothesis-driven) 
data analysis – usually in the form of a linear discriminant 
analysis (LDA). However, these supervised techniques al-
ways require a-priori decisions on the part of the taxono-
mist, and if the morphological separation of the entities is 
diffuse, several quite different hypotheses (groupings) might 
be imposed on the same data set each of which achieves 
a high "probability of confirmation" in the LDA. Unless 
there is some independent information available, such as 
genetic and biochemical data or complementary morphol-
ogy of sexuals, the taxonomist is entirely unable to deter-
mine which hypothesis is more probable. The introduction 
of exploratory data analyses (EDA) that generate indepen-
dent grouping hypotheses which then can be compared with 
the hypotheses generated by the confirmatory data analy-
sis offers one way out of this dilemma.  

As a heuristic approach, EDA algorithms are typically 
designed for recognition of hidden patterns (TUKEY 1977) 
in a mass of weakly differentiated objects and to yield new 
insights into multivariate data structures without one or more 
a priori hypotheses. Many tools have been developed for 
EDA, and many of them are also used to discern complex 
patterns in morphological data (GOLOBOFF & al. 2006, 
BAUR & LEUENBERGER 2011, KLINGENBERG 2011). Seve-
ral types of visualization technique can be used in vari-
ous EDA approaches, such as histograms, scatter plots or 
dendrograms. Histograms and scatter plots are sufficient 
in order to display results within low-dimensional datasets, 
but with increasing dimensionality (i.e., the number of ob-

jects and axes) their usefulness as a means of producing a 
visual depiction of structures in data sets decreases rapid-
ly. Dendrograms, in comparison, can depict the structure of 
a complex dataset in two dimensions only, and they offer 
the most rapid and transparent means of extracting group-
ing hypotheses from multiple data sets (ROUSSEEUW 1986). 
These algorithms typically require little computer capacity 
and many statistical packages are available to run such 
analyses. Moreover, hierarchical clustering consistently per-
forms well on biological datasets for many of the valida-
tion measures (BROCK 2008). These types of analyses are 
therefore very popular in scientific research.  

Hierarchical clustering is a widely-used method for ex-
ploratory learning in various biological domains such as for 
example genetic diversity in crop species (ODONG & al. 
2011), morphological traits and molecular markers in grass 
species (TABACCHI & al. 2006), allozyme data in various 
vertebrates and insects (WIENS 2000), venom molecules in 
scorpions (NASCIMENTO 2006), or protein patterns in Dro-
sophila (FELTENS 2010). Hierarchical clustering algorithms 
construct dendrograms from a distance matrix as input.  

Agglomerative Nesting (AGNES) is one variant of hi-
erarchical clustering. It was introduced by KAUFMAN & 
ROUSSEEUW (1990) and was later improved for increased 
robustness (STRUYF & al. 1997). Using an objective func-
tion that finds the optimal pair of clusters to merge, AGNES 
successively forms nodes that have the least dissimilarity, 
until each smallest unit is clustered (DAY & EDELSBRUN-
NER 1984, R DEVELOPMENT CORE TEAM 2012). We con-
sider in this paper the application of this method in mor-
phological pattern recognition. Two of the six different ag-
glomeration methods, Ward's method (Ward's minimum 
variance method) (WARD 1963) and Unweighted Pair Group 
Method with Arithmetic Mean (UPGMA), implemented by 
the R package cluster (ROUSSEEUW & al. 2012), clearly 
showed the highest performance in our tests with ant data. 
This selection is further supported in the case of Ward's 
method which is used in many standard clustering proce-
dures and in UPGMA, because of its robustness, mono-
tonicity and consistency (STRUYF & al. 1997). We tested 
these two methods on exclusively morphological data sets 
of 48 pairs of 74 cryptic ant species and compared the 
performance with the highly flexible ordination method 
Non-Metric Multidimensional Scaling (NMDS) (KRUSKAL 
1964, LEGENDRE & LEGENDRE 1998) and the non-hierar-
chical clustering method K-Means (LLOYD 1982) which do 
not require the estimation of distances to nodes.  

Material and Methods 
Our script is written in R and freely available under the GNU 
⁄ GPL licence from the following website: http://sourceforge. 
net/projects/agnesclustering/.  

Preparation of the data matrix by a hypothesis-free 
linear discriminant analysis 
In order to compare realistically the performance of Ward's 
method, UPGMA, NMDS, and K-Means, the input vari-
ables were prepared in all four cases in the same way: A 
cumulative Linear Discriminant Analysis (LDA) was run 
which considers each nest sample (composed of n indi-
vidual ant workers) as a different class and determines the 
centroid position of these sample in the Euclidean space. 
This procedure builds on the performance of LDA without       
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Fig. 1: Steps of proposed exploratory decision making 
protocol are illustrated. No boundaries are shown (A) by 
the broadly overlapping raw data of nest samples. Cumu-
lative LDA (B) determines group centroids and creates a 
distance matrix for the set of samples. Distance-based hi-
erarchical clustering decomposes data into several clusters 
(C); the less dissimilar objects form one cluster. Samples 
that nested in a cluster are considered members of newly 
hypothesized morphological entities. Finally, the accuracy 
of hypothesized morphological entities is tested (D) ac-
cording to the supervised confirmative method LDA.  

imposing a species hypothesis – i.e., the whole process re-
mains explorative, the LDA is used here as an explora-
tory tool, not as a confirmation. All four methods then 
operate with a dissimilarity (distance) matrix based on these 
centroid coordinates with each nest sample forming one 
object (Fig. 1). The ways of computing these distances, 
however, did differ between algorithms and / or distance 
methods.  

Considering that a nest sample is composed of one to 
many individual workers, it seems problematic to consider 
them as a single object. However, this assumption biologi-
cally makes sense as all ants found within a nest can be 
assumed to belong to the same species and to be geneti-
cally more or less closely related. Exceptions to this rule 
are socially parasitic and parabiotic ant communities in 
which different species are found within the same ant nest. 
In these cases, however, the heterospecific ants, as a rule, 
are easily separable by simple visual inspection of their 
phenotype.  

Agglomerative Nesting (AGNES) 
Agglomerative Nesting (AGNES) is a well-known group 
of robust hierarchical clustering methods (STRUYF & al. 
1997). AGNES proceeds by a series of fusions. It starts 
with the situation (at step 0), in which each object forms a 
separate cluster of its own, and then the algorithm merges 
a pair of minimally dissimilar objects into one cluster. The 
method successively builds new clusters or merges clus-
ters optimizing least dissimilarity, until each object is part 
of a cluster (DAY & EDELSBRUNNER 1984, LEGENDRE & 
LEGENDRE 1998).  

Here, we used the AGNES software as introduced by 
KAUFMAN & ROUSSEEUW (1990) to construct rootless phe-
netic trees from distance measurements. It is implemented 
in the R-environment (MAECHLER & al. 2012), where six 
different agglomeration methods are available: "average" 
(Unweighted Pair Group Method with Arithmetic Mean, 
UPGMA), "single" (single linkage), "complete" (complete 
linkage), "ward" (Ward's method), "weighted" (weighted 
average linkage) and its generalization "flexible" which uses 
(a constant version of) the Lance-Williams formula and 
the par.method argument. Default is "average" (MAECHLER 
& al. 2012).  

In our analyses we compared the two agglomeration 
methods that clearly showed the highest performance in in-
itial tests with ant data: method = "ward" (Ward's method) 
and method = "average" (UPGMA).  

Agglomeration methods: UPGMA and Ward's meth-
od: UPGMA uses the distance matrix of the centroids of 
nest samples as simple Euclidean distance and Ward's meth-
od utilizes squared Euclidean distance. UPGMA first cal-
culates the arithmetic mean of the Euclidean distance be-
tween the closest units and forms the first node (pair of 
objects) for the condition that the mean within-pair dis-
tance is smallest. Assume that this node combines samples 
A and B. The next node is then formed under the same rule 
– either by merging two other smallest units C, D, ... Z or 
by merging the cluster AB with one of the other smallest 
units C, D, ... Z. Rather than presenting further details, we 
refer here to the excellent and illustrative explanation of the 
UPGMA procedure (EDWARDS & PARKER 2011). Ward's 
method essentially uses the same procedure but optimizes 
within cluster-variance of distances rather than mean of 
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distances. A side effect of this is that Ward's method is con-
strained to Euclidean distances that are squared during the 
process. When the fusion is completed, dendrograms are 
generated that display distance among objects and fusion 
nodes along their branches. The analysis was run using the 
AGNES function implemented in the cluster package of R 
(R DEVELOPMENT CORE TEAM 2012) using the methods 
"average" (UPGMA) and "ward" with default settings.  

K-Means clustering 
K-Means clustering is a non-hierarchical / non-nested clus-
ter analysis that aims to partition n objects into K clusters 
in which each object belongs to the cluster with the near-
est mean (LLOYD 1982). The algorithm uses an iterative 
refinement technique. Its first step typically includes a sub-
jective decision on the part of the researcher regarding how 
many K clusters have to be separated. K starting means are 
generated and the data space is divided into K segments. 
The data points within these segments form the initial clus-
ters. The centroid of all data points within a segment then 
becomes the new means and the segments are adjusted 
accordingly. This process is repeated iteratively until all 
centroids remain stationary. The approach resembles the 
Ward-approach described above, and also has conceptual 
similarities to analysis of variance. Being iterative, K-Means-
clustering can be trapped in local minima, which is usu-
ally addressed by comparing several starting configurations. 
The analysis was run using the K-Means function imple-
mented in the stats package of R using the default algo-
rithm of HARTIGAN & WONG (1979) and ten different 
(random) starting conditions. In contrast to AGNES, K-
Means clustering does not require the estimation of dis-
tances to nodes, thus avoiding a weakness of agglomera-
tive techniques.  

NMDS ordination 
Non-Metric Multidimensional Scaling is a highly flexible 
ordination method that transforms information from an ini-
tially provided dissimilarity matrix into a ranking of pair-
wise dissimilarities and depicts them within a low-dimen-
sional space. We used the NMDS algorithm implemented 
in the ecodist package of R with default settings and ten 
iterations. In order to keep the data comparable and to have 
reasonable performance in each of the 48 cases under in-
vestigation, we fixed the number of dimensions to six. This 
was, in our data sets, a reasonable number of dimensions 
which resulted in Stress values between 5 and 12. Confi-
gurations with Stress values in this range are considered 
to produce plots that are easily interpretable and have lit-
tle risk of misinterpretation (Clarke's rules of thumb).  

However, the graphical display – 15 bivariate plots of 
the six first dimensions – was difficult to translate into a 
species hypothesis. Some plots provided a clear separation 
of cryptic species while others did not show any structure. 
In order to make use of the six-dimensional NMDS data, 
we evaluated these by K-Means clustering with Euclidean 
distances of objects in NMDS space being used as a dis-
tance matrix.  

The selection of data sets for performance testing  
We aimed at rigorous performance testing and only in-
cluded data sets in which all four exploratory data analysis 
methods are likely to produce errors. Sufficiently large data 

sets with numeric recording of multiple phenotypic char-
acters of 209 ant species belonging to 15 genera are avail-
able in the Senckenberg Museum of Natural History Gör-
litz. These data would theoretically allow one to test the 
discrimination of > 3800 intrageneric species pairs. How-
ever, the vast majority of these data sets had to be excluded 
from the tests – primarily for the following reason: If there 
is only a single character in a multiple character combi-
nation showing no interspecific overlap on the individual 
level, both UPGMA and Ward's method almost always 
provide dendrograms showing 100% congruence with pre-
established species hypotheses. Therefore such data are not 
appropriate for test purposes. We established the following 
rules for the selection of test systems.  

(a) The species separation must be very difficult. On 
the individual level and for each character considered, there 
must be interspecific overlap demonstrable in bivariate plots 
against a body size measure (here head size).  

(b) Data included both continuous and meristic data 
types such as linear morphometrics or seta counts. These 
data were normally distributed in the vast majority of cases. 
Seta counts of weakly-haired species may be positively 
skewed in the cases of a few characters but we did not 
find significant differences in the final clustering whether 
we normalized the data distributions or not.  

(c) A total of at least 40 nest samples must be avail-
able in each species pair.  

(d) Only two species were considered in each run.  
(e) The frequency of single-worker nest samples should 

be < 50% in the most difficult cases. However, success-
ful analyses can also be run with frequencies > 70%!  

(f) Cases obviously including hybrid samples were ex-
cluded from the performance test (but see below).  

As a result, we selected 42 species pairs represented 
by 74 cryptic or very closely related species. In case of six 
species pairs with larger clustering errors, accessory runs 
with reduced character number were performed. The re-
duced character set was determined following the stepwise 
elimination procedure of the linear discriminant function 
implemented in the software package SPSS 15.0. These 
data sets and their references are listed in Table 1. In ad-
dition to this performance test, we also checked the be-
havior of the four classification methods in five published 
hybrid cases of Formica, Lasius, Temnothorax and Messor.  

Formation of Improved Species Hypotheses in the test 
data sets 
The leading sources of hypothesis formation in these weak-
ly differentiated workers of cryptic ant species were nume-
rically recorded morphological characters but also subjec-
tive assessment of the overall phenotypic picture. Subjec-
tive morphospecies hypotheses were tested and modified 
with these data by linear discriminant analyses. They were 
changed to Improved Species Hypotheses if there was very 
strong counter-evidence by data sources independent from 
worker morphology. These were: 

(a) Information from the associated sexual castes, which 
in some species show more obvious interspecific differ-
ences than workers. Such data could be used (or were use-
ful) in < 10% of all ant samples.  

(b) Chorological data (zoogeography, altitudinal zona-
tion, sympatry, parapatry, syntopic occurrence). These data 
were constantly available.       
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Fig. 2: Flowchart of forming the Final Morphospecies Hypothesis.  

 

 
 (c) Data on habitat selection or nest sites. These data 

were available in < 50% of all investigated samples.  
(d) Seasonal or diurnal timing of swarming. Such data 

were available in < 10% of samples.  
(e) DNA data. These were mainly mtDNA data. The 

latter were considered to have a rather low weight in de-
cision making due to the high level of mtDNA paraphyly 

in some ant groups (SEIFERT 2009). They were available in 
only 20% of the studied species and in no case for com-
plete data sets.  

Despite the incomplete availability of the information 
sources (a) to (e) on the per-sample level, their cumula-
tive information was most useful for assessing if the mor-
phologically delimited entities might represent biospecies.     
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Fig. 3: Flowchart of forming the Advanced Species Hypothesis.  

 

Formation of Advanced Species Hypothesis as in-
teraction between clustering and an iterative LDA 
operating on the level of individual workers 
Advanced Species Hypotheses were determined by com-
bining exploratory and supervised analyses. After running 
the four clustering methods, the two with the lowest de-
viation from Improved Species Hypotheses were consid-
ered as indicative. Explicitly: Samples not placed in the 
intersection set being in congruence with Improved Spe-
cies Hypotheses were marked as wild-cards in a confirma-
tive linear discriminant function – i.e., no species hypo-
theses were imposed on them. The change from nest sam-
ple means to individuals has the advantage of consider-
ably increasing the number of objects. This fulfilled the 
condition of minimizing the supervisor-induced bias of 
LDA classifications – i.e., the requirement that the number 
of objects N in the smallest class should be more than 
threefold larger than the number of considered morphologi-
cal characters C. We checked the LDA results for all cases 
with N / C ratios 2.9 - 4.0 by a "Leave-One-Out Cross-
Validation" LDA (LACHENBRUCH & MICKEY 1968, LE-
SAFFRE & al. 1989) using the software package SPSS 15.0 
and found no result to differ by more than 4%.  

After the first run of the confirmative LDA, species hy-
potheses were allocated to samples with the mean poste-
rior probability of all nest members of P > 0.66. Samples 

with P ≤ 0.66 retained their wild-cards or, exceptionally, 
even got a wild-card if they had not had it before. In the 
second run of LDA the decision threshold was reduced to 
0.58 and in the last run, if necessary, the most doubtful 
samples were allocated according to the p > 0.5 threshold. 
No undecided samples remained. We refer to this result of 
the iterative sample assignment as the Final Morphospecies 
Hypothesis (Fig. 2). The sample mean of posterior proba-
bility P of a species A was calculated as the square root of 
the product of probabilities for individual workers to be-
long to species A divided by the sum of the square roots of 
individual probability products of species A and B. The 
sample means of posterior probabilities P showed a per-
fect correlation to the arithmetic mean of individual LDA 
scores following a logistic sigmoid function. The Final 
Morphospecies Hypothesis was only accepted if there were 
no strong counter-arguments from the information sources 
(a) to (e) as discussed in the previous section. We refer to 
the classification achieved by this procedure as Advanced 
Species Hypothesis (Fig. 3). The reader should be aware 
that an iterative LDA generates contingent posterior prob-
abilities. This does not present a problem within the meth-
odological frame described in this paper but applying an 
iterative LDA in other contexts should be considered with 
care.  

Considering the substantial problems of delimitation of 
cryptic species, it is reasonable to expect some deviations       
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Fig. 4: Ward's method dendrogram of three cryptic species Tapinoma erraticum, T. nigerrimum and T. subboreale. 
Sequence of information in the string designating the samples: Advanced Species Hypothesis – country – locality – date 
– sample number. There is a full agreement of AGNES clustering with advanced species hypotheses.  
 

 
of the Advanced Species Hypotheses from the biological-
ly meaningful entities – at least in the most difficult cases. 
However, it is not the aim of this methodological paper to 
discuss taxonomic details, such as substructures within the 
branches of hypothesized species and their possible biolo-
gical or evolutionary meaning, or reasons for single mis-

placed samples, nor is it our goal to discuss complete or 
incomplete species divergence and intraspecific polymor-
phism. The important point in this context is to use a de-
fined procedure of hypothesis formation leading to rea-
sonable results and to allow a neutral, comparative perform-
ance testing of the four exploratory data analysis methods.  
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Results and Discussion 
Agreement of Advanced Species Hypotheses with 
published findings 
Table 1 shows the data of 48 species discriminations with 
five clustering methods: 42 used unreduced character com-
binations and 6 are repetitions of less clearly separated 
species pairs using reduced character sets. These reduced 
sets were selected by the stepwise elimination procedure of 
the linear discrimiant function implemented in SPSS 15.0. 
In the case of each of the five methods tested, character re-
duction resulted in a significant improvement of cluster-
ing in four species pairs while the situation remained more 
or less unchanged in two pairs. This indicates that charac-
ter reduction frequently is a useful step in species discrimi-
nation (see also MODER & al. 2007). Applying the more 
effective character reduction method of MODER & al. is re-
commended if one has access to the high computing capa-
city needed.  

The Advanced Species Hypotheses presented here are 
congruent in 35 tested species pairs with species hypothe-
ses published in 25 earlier taxonomic papers (see Tab. 1). 
Slight deviations (up to 6%) from some of the published 
hypotheses did occur because the original data files were 
extended by material investigated later, because new dis-
criminative characters have been introduced, and because 
the biological background information assisting species de-
limitation was improved. Seven of the tested species pairs 
represent unpublished evidence: Five would involve rank 
elevations of described taxa and two the discovery of new, 
unknown taxa. We emphasize in this context that any spe-
cies hypothesis stated in this purely methodological paper 
has no significance in the sense of Zoological Nomencla-
ture; the rank elevations take effect only after having been 
published in a formal taxonomic paper.  

Comparing the performance of the tested clustering 
methods 
As explained above, the test samples were selected for the 
condition that the clustering methods are likely to lead to 
errors – in particular we emphasize the requirement that 
there must be interspecific overlap in every character con-
sidered. In the case of Tetramorium alpestre / impurum, 
for example, as much as 68% of worker individuals were 
found in the 95% confidence interval of interspecific over-
lap of the most discriminative character and this increased 
to 78% in the second best character.  

A full coincidence of Ward's method dendrograms with 
Advanced Species Hypotheses in the example of three 
cryptic Tapinoma species T. erraticum, T. nigerrimum and 
T. simrothi is shown in Figure 4. 

Such perfect agreement was achieved in 46% of all 
classifications via Ward's method, 21% of all UPGMA, 
31% of NMDS- K-Means and 35% of K-Means classifi-
cations. Figures 5 and 6, presenting the case of the cryp-
tic Central European ant species Formica cinerea and F. 
fuscocinerea, give examples for an average situation. The 
arrows point to samples in which the AGNES clustering 
contradicted the Advanced Species Hypotheses (= errors): 
one sample or 1.3% in Ward's method and three samples or 
3.8% in UPGMA. Furthermore the UPGMA dendrogram 
(Fig. 6) shows two outliers. The errors and outliers were 
set as wild-cards in the controlling LDA which rectified 
them in agreement with the Advanced Species Hypotheses.  

The mean deviation in the 48 cases from Advanced 
Species Hypotheses was 5.25% in UPGMA, 2.40% in 
Ward's method, 2.58% in NMDS-K-Means, 2.09% in K-
Means and 21.50% in K-Means without hypothesis-free 
LDA. The performance of the five methods was tested with 
a generalized linear model (GLM) with binomial errors and 
the species pairs as a random factor (grouping variable). 
Ward's method achieves a significantly higher ratio of co-
incident assignments than UPGMA and K-Means without 
LDA (both p < 0.0001) but performs similarly to NMDS-
K-Means and K-Means with LDA. We direct attention to 
the dramatically worse classification success of K-Means 
clustering using nest means of morphological primary char-
acters as input instead of the centroid coordinates gene-
rated by the hypothesis-free LDA. Accordingly, it appears 
that having first run a hypothesis-free LDA is one of the 
key factors of the surprising success of the four other clus-
tering methods.  

The use of squared instead of simple Euclidean dis-
tance in Ward's method apparently leads to clearer treeing 
with longer distances between the clusters but possibly also 
to a higher risk of showing sub-clusters of doubtful bio-
logical significance. In other words, there is some danger 
of over-interpretation. UPGMA tends to form unbalanced 
clusters (ODONG & al. 2011) and the algorithm often as-
signs outliers between separate clusters. We confirmed this 
finding. In general, the dendrograms of UPGMA are more 
difficult to translate into hypotheses, but an advantage of 
the method is that the outliers may direct attention to par-
ticular samples with deviating characters – outliers might 
signalize a different taxon, measurement errors, morpholo-
gical abnormalities or typing errors while creating the input 
file. Ward's method more frequently tends to hide such sam-
ples within a cluster. Accordingly, for control and risk as-
sessment, parallel running of Ward's method and UPGMA 
is advisable.  

Although similar to Ward's method from the perspec-
tive of performance, NMDS-K-Means and K-Means none- 

______________________________________________ 

Tab. 1: Deviation in per cent of UPGMA, Ward's method, 
NMDS-K-Means, and K-Means clustering from advanced 
species hypotheses in cryptic species. "K-Means no LDA" 
is a K-Means clustering using nest sample means of pri-
mary morphological data – i.e., not using centroid data 
generated by a hypothesis-free LDA. NS = number of sam-
ples; NC = number of characters taken into consideration 
(an arrow in this column indicates a repetition of the pre-
vious case but with a reduced number of characters). All 
deviations are given in per cent. Abbreviations, [BS] and 
[SCS] denote unpublished data of Bernhard Seifert [BS] 
and Sándor Csősz [SCS]. The references for publications 
indicated [1 - 23] are as follows: [1] SEIFERT (2012b), [2] 
SEIFERT (2007), [3] SEIFERT (2008), [4] SEIFERT (2003a), 
[5] SEIFERT (2003b), [6] SEIFERT & SCHULTZ (2009a), [7] 
SEIFERT & SCHULTZ (2009b), [8] SEIFERT (2000), [9] 
SEIFERT & GOROPASHNAYA (2004), [10] SEIFERT (2004), 
[11] SEIFERT (1992), [12] SEIFERT (1988), [13] SEIFERT 
(1991), [14] SEIFERT & al. (2009), [15] SEIFERT (2005), 
[16] SEIFERT (2011), [17] CSŐSZ & SEIFERT (2003), [18] 
SEIFERT (2012a), [19] SEIFERT (1984), [20] SEIFERT (2006a), 
[21] STEINER & al. (2010), [22] CSŐSZ & al. (2007), [23] 
CSŐSZ & SCHULZ (2010).  
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Example NC NS UPGMA Ward NMDS-
K-Means 

K-
Means 

K-Means 
no LDA 

References 

Bothriomymex communistus / corsicus  16 111 0.00 0.00 0.00 0.00 1.80 [1] 
Camponotus atricolor / piceus 11 94 4.25 0.00 3.19 2.12 14.89 [BS], [2] 
Camponotus herculeanus / ligniperda 6 49 0.00 0.00 0.00 0.00 22.45 [3] 
Cardiocondyla bulgarica/ sahlbergi  17 65 0.00 0.00 3.08 3.08 20.00 [BS], [4] 
Cardiocondyla dalmatica / elegans 13 78 10.26 2.56 2.56 2.56 17.95 [BS] 
Cardiocondyla mauritanica / kagutsuchi  14 140 0.71 0.71 0.71 0.71 27.14 [BS], [4] 
Crematogaster schmidti / scutellaris 10 69 0.00 0.00 1.45 1.45 5.80 [BS], [2] 
Formica cinerea / fuscocinerea 13 78 6.41 1.28 2.56 2.56 11.54 [BS], [5] 
Formica clara / cunicularia 18 121 4.96 4.13 4.13 2.48 8.26 [6] 
Formica clarissima / litoralis 17 143 5.59 0.00 2.80 1.40 35.66 [7] 
Formica exsecta / fennica 14 126 0.79 0.00 3.17 3.17 50.00 [BS], [8] 
Formica foreli / pressilabris 7 229 1.74 1.74 0.00 0.00 0.87 [BS], [8] 
Formica litoralis / pamirica 1 + 2 17 120 3.33 3.33 3.33 3.33 44.17 [7] 
Formica lugubris / pratensis Panpalaearctic 5 316 1.27 0.63 0.32 0.32 0.32 [9], [BS] 
Hypoponera punctatissima / schauinslandi 10 54 1.85 1.85 0.00 0.00 37.04 [10], [BS] 
Lasius barbarus / lasioides 13 100 25.00 6.00 6.00 6.00 17.00 [BS] 
Lasius barbarus / lasioides  →8 100 26.00 9.00 7.00 3.00 28.00 [BS] 
Lasius emarginatus / illyricus 15 85 4.71 3.53 0.00 1.18 7.06 [BS]  
Lasius gebaueri / psammophilus 16 77 0.00 0.00 1.30 1.30 42.86 [BS], [11] 
Lasius japonicus / platythorax 14 70 2.86 2.86 0.00 0.00 18.57 [BS], [11] 
Lasius mixtus / sabularum  14 66 0.00 0.00 0.00 0.00 33.33 [BS], [12] 
Lasius niger / platythorax 14 114 0.00 0.00 0.00 0.00 9.65 [BS], [13] 
Lasius paralienus / paralienus 2 16 62 1.61 4.84 3.23 4.84 3.23 [BS] 
Lasius paralienus / psammophilus 16 123 1.63 0.00 3.25 2.44 32.52 [BS], [11] 
Lasius paralienus 2 / psammophilus 16 91 6.59 1.10 1.10 7.69 23.08 [BS]  
Lasius piliferus / psammophilus 16 67 7.46 0.00 0.00 0.00 43.28 [BS], [11] 
Lasius sabularum / umbratus  14 150 1.33 0.00 0.00 0.00 26.00 [BS], [12] 
Myrmica constricta / hellenica 16 91 7.69 3.30 1.10 1.10 9.89 [14] 
Myrmica lobicornis /lobulicornis 16 97 0.00 7.22 1.03 1.03 7.22 [15], [BS] 
Myrmica lobicornis /lobulicornis →10 97 2.06 0.00 2.06 2.06 7.22 [15], [BS] 
Myrmica salina / specioides 16 161 9.32 9.94 2.48 3.73 30.13 [16], [BS] 
Myrmica salina / specioides →6 161 3.11 9.32 3.11 3.11 5.59 [16], [BS] 
Ponera coarctata / testacea 8 141 1.42 0.71 0.00 0.00 10.64 [BS], [17] 
Tapinoma erraticum / nigerrimum 14 55 0.00 0.00 0.00 0.00 3.64 [18] 
Tapinoma erraticum / simrothi 14 41 2.44 0.00 0.00 0.00 2.44 [BS], [19] 
Tapinoma erraticum / subboreale 14 52 0.00 0.00 0.00 0.00 3.84 [18] 
Tapinoma nigerrimum / simrothi  14 48 0.00 0.00 0.00 0.00 18.75 [BS], [19] 
Temnothorax crassispinus / nylanderi sp. 2 18 100 5.00 2.00 12.00 3.00 50.00 [BS] 
Temnothorax lichtensteini / parvulus 18 113 6.19 0.88 7.96 6.19 39.82 [BS] 
Temnothorax lichtensteini / parvulus  → 8 113 1.77 1.77 1.77 1.77 4.42 [BS] 
Temnothorax luteus / racovitzai 17 64 14.06 3.12 3.12 3.12 17.18 [BS] 
Temnothorax nigriceps / tuberum 18 89 3.37 0.00 1.12 1.12 33.71 [BS] 
Temnothorax saxonicus / sordidulus 18 96 17.71 17.71 2.08 1.04 43.75 [20] 
Temnothorax saxonicus / sordidulus →10 96 7.29 4.17 0.00 0.00 14.58 [20] 
Tetramorium alpestre / impurum  26 103 33.98 8.74 33.98 20.39 48.54 [21] 
Tetramorium alpestre / impurum  →10 103 13.59 2.91 2.91 2.91 38.83 [21] 
Tetramorium chefketi / moravicum  17 62 3.23 0.00 0.00 0.00 29.03 [SCS], [22] 
Tetramorium diomedeum / ferox  21 63 1.59 0.00 0.00 0.00 30.16 [23] 
Mean percentage of 48 cases   5.25 2.40 2.58 2.09 21.50   
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Fig. 5: Ward's method dendrogram of the cryptic species Formica cinerea and F. fuscocinerea.  Sequence of informa-
tion in the string designating the samples: Advanced Species Hypothesis – country – locality – date – sample number. 
Deviations from advanced species hypotheses: 1.3% error in Ward's method, 3.8% error and 2.5% outliers in UPGMA. 
Arrows mark the erroneously placed nest samples. 
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Fig. 6: UPGMA dendrogram of the cryptic species Formica cinerea and F. fuscocinerea.  Sequence of information in 
the string designating the samples: Advanced Species Hypothesis – country – locality – date – sample number. Devia-
tions from advanced species hypotheses: 1.3% error in Ward's method, 3.8% error and 2.5% outliers in UPGMA. Arrows 
mark the erroneously placed nest samples. 
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theless have the disadvantage of requiring an a priori de-
termination of the number of classes. Furthermore they 
are unable to expose substructures. The dendrograms of 
both UPGMA and Ward's method, in contrast, provide an 
immediate idea of sub-clusters of possibly genuine biologi-
cal significance. A further disadvantage of NMDS-K-Means, 
but not of K-Means alone, is an extremely long computing 
time: A PC having 2MB RAM and a 32-bit CPU needed 
three minutes to process 156 samples and, because of an 
exponential growth of computing time, it failed to process 
230 samples within two hours.  

As one factor probably influencing the extraordinarily 
positive results shown in Table 1, we must consider the 
dominance of the morphological methods in the determi-
nation of Advanced Species Hypotheses and the compar-
ably low contribution of independent sources of informa-
tion such as morphology of sexuals, chorology, behavior, 
ecology, or genetics. The latter data sets are required to test 
hypotheses formulated by exploratory analyses of morpho-
logical data. Expectably, if these Advanced Species Hypo-
theses would have been determined in each sample by a 
fully integrative taxonomy including morphology, nucle-
ar DNA and cuticular hydrocarbons (GALIMBERTI & al. 
2012), the deviation would probably not appear to be so 
minute – the more disciplines are involved the higher the 
probability of conflicts. However, SCHLICK-STEINER & al. 
(2010), evaluating 184 systematic studies on arthropods 
that reported diversity at the species level using more than 
one discipline (morphology, DNA analysis, ecology, en-
zymes, behavior, life history, cytogenetics, chemistry), found 
morphology to show a higher congruence with the final 
species hypotheses formed by integrative taxonomy than 
analysis of nuDNA, mtDNA or ecology. Given this gen-
eral arthropod finding and our long-term experience with 
the biology of many of the ant species considered here, 
we are confident that the Advanced Species Hypotheses in 
this paper are close to biologically meaningful entities. The 
method is applicable to any group of eusocial organisms 
in which nest members are conspecific such as ants, bees, 
wasps, termites, gall-making aphids, thrips, weevils, pistol 
shrimps, or mole rats.  

The four clustering methods are not effective tools for 
analysis of hybridization 
We checked the performance of UPGMA, Ward's method, 
NMDS-K-Means and K-Means in five published cases of 
interspecific hybridization (Tab. 2). The delimitation of hy-
brids and parental species was based in these earlier stud-
ies on data on morphology (in all five cases), nuDNA (in 
three cases), mtDNA (in two cases) and allozymes (in two 
cases). We found an acceptable clustering only in Messor 
(realistically shown by all four methods), the Ward cluster-
ing of Formica aquilonia / polyctena, and the K-Means 
clustering of Formica polyctena / rufa. In all other cases, 
the four clustering methods presented confused pictures 
that did not allow any reasonable hypothesis formation. 
Accordingly, we do not recommend applying any of these 
methods in order to identify hybrids. This failure is explained 
by the fluctuating, to-and-fro nature of phenotypic charac-
ters in hybrids. In the same hybrid, one character may ap-
proach the situation of parental species A, the second char-
acter may be close to parental species B, and a third char-
acter may be intermediate (SEIFERT 1984, 1999, 2006b, 

KULMUNI & al. 2010, SEIFERT & al. 2010, STEINER & al. 
2011, BAGHERIAN & al. 2012). This induces a great deal of 
instability in node formation or cluster allocation. Back-
crosses of F1 hybrids with one of the parental species, 
which are likely to occur in the two Formica cases and in 
Messor, would also make the whole picture more diffuse. 
A robust method for hybrid identification, successfully tested 
in each of these five cases and another one (BAGHERIAN & 
al. 2012), is a linear discriminant analysis in which a priori 
hypotheses are only given to samples reliably identified 
as pure parental species while problematic or putative hy-
brid samples are run as wild-cards. The placement along 
this discriminant vector highly correlates with nuDNA data 
(KULMUNI & al. 2010, SEIFERT & al. 2010). Principal com-
ponent analysis was also found to be useful in analyses of 
hybridization if the character set under consideration was 
reduced to the most indicative selection.  

Conclusion and recommendation 
The applications of Ward's method, UPGMA and K-Means 
clustering described here allow the formation of sound hy-
potheses on formerly unexpected cryptic morphological 
entities in ants. The outstanding performance is probably 
caused by running a hypothesis-free linear discriminant 
analysis that determines the position of nest samples in the 
Euclidean space by calculating nest sample (group) centro-
ids and creates a distance matrix. The Euclidean distance 
matrix is a precondition of cluster algorithms, but using the 
centroid position of nests instead of the raw data of pri-
mary characters as input apparently reduces accidental er-
rors during agglomerative node formation and in K-Means 
clustering. We propose to name the whole procedure NC-
Ward, NC-UPGMA and NC-K-Means (with "NC" mean-
ing "nest centroid"). These clustering methods will help ac-
celerate the often complicated and tedious taxonomical 
decision making process dramatically. The method is ap-
plicable to any group of eusocial organisms such as ants, 
bees, wasps, termites, gall-making aphids, thrips, weevils, 
pistol shrimps, or mole rats. In general, NC-Clustering can 
be applied for all cohesive systems providing repeats of de-
finitely conspecific elements – e.g., leaves and flowers of 
the same plant, a coral "head" of genetically identical po-
lyps, an aphid colony produced by a single fundatrix. On 
the intraspecific level, AGNES dendrograms can also de-
pict regional population differentiation if the input data have 
a high quality. Hence, it is considered a suitable tool to ad-
dress zoogeographical questions as well.  

Summing up, we recommend the following procedure 
as the best operational routine for morphological clustering 
of ant samples:  

(1) running a hypothesis-free LDA to determine nest-
sample centroids in the Euclidean space;  

(2) running Ward's method in order to showing struc-
tures the most clearly and with a low average error;  

(3) running UPGMA in order to indicate outliers. Such 
samples can be checked afterwards for possible reasons of 
their outstanding position;  

(4) running K-Means in order to have a low error rate 
and testing a possible over-structuring by Ward's method 
by modifying the K value.  

(5a) If there is already a previous and feasible species 
hypothesis, the starting hypothesis of the confirmative LDA 
is prepared by integrating the cluster information of Ward's    
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Tab. 2: Deviation in per cent of five clustering methods from identifications of hybrids and parental species based on 
integrative taxonomy. "K-Means no LDA" is a K-Means clustering using nest sample means of primary morphological 
data – i.e., not using centroid data generated by a hypothesis-free LDA. NS = number of samples; NC = number of 
characters taken into consideration (an arrow in this column indicates a repetition of the previous case but with a 
reduced number of characters). The references for publications indicated [24 - 28] are as follows: [24] KULMUNI & al. 
(2010), [25] SEIFERT & al. (2010), [26] STEINER & al. (2011), [27] PUSCH & al. (2006), [28] SEIFERT (2006b). 

Example NC NS UPGMA Ward NMDS K-Means K-Means 
no LDA 

References 

Formica aquilonia / aquilonia x polyctena / polyctena 16 145 7.59 3.45 35.86 17.24 34.48 [24] 

Formica polyctena / polyctena x rufa / rufa 13 140 7.14 7.14 13.54 1.43 14.28 [25] 

Messor minor / minor x wasmanni / wasmanni  17 30 6.67 6.67 6.67 6.67 20.00 [26] 

Temnothorax crassispinus / crassispinus x nylanderi / 
nylanderi  

18 143 6.99 6.99 30.07 32.16 42.65 [27] 

Lasius jensi / jensi x umbratus / umbratus 14 199 18.59 18.59 26.13 24.12 50.00 [28] 

Mean percentage of five cases   9.39 8.57 22.45 16.32 32.28  

 
method and K-Means. The previous hypothesis is main-
tained for all samples in which both Ward's method and 
K-Means are congruent with the previous hypothesis. All 
samples in disagreement with the hypothesis according to at 
least one method (Ward's method or K-Means) are marked 
as wild-cards – i.e., no species hypotheses were imposed on 
them. The iterative run of the confirmative LDA is done as 
shown in Figure 2.  

(5b) If there exists no feasible species hypothesis, the 
confirmative LDA is run by setting the samples for which 
the clustering of Ward's method and K-Means disagrees as 
wild-cards. The iterative LDA is then run in the same way 
as in (5a). Steps (1) - (4) and (5b) represent a completely 
explorative determination of morphospecies that is easily 
programmed as an automatic system. From the data in 
Table 1 it can be concluded that a completely explorative 
procedure is expected to have a low error rate because the 
confirmative LDA corrects most of the clustering errors 
– i.e., even if a clustering disagreed by 10% with the Ad-
vanced Species Hypotheses, most of these deviations were 
rectified by the LDA.  

Acknowledgements 
We wish to thank three unknown referees as well as Kars-
ten Wesche (Senckenberg Museum of Natural History Gör-
litz), Zsolt Pénzes (Szeged University) and David Sheets 
(Canisius College Buffalo) for giving valuable suggestions 
on how to improve our manuscript and Thomas Cooper for 
linguistic corrections. 

References 

BAGHERIAN, A., MÜNCH, W. & SEIFERT, B. 2012: A first de-
monstration of interspecific hybridization in Myrmica ants by 
geometric morphometrics (Hymenoptera: Formicidae). – Myr-
mecological News 17: 121-131. 

BAUR, H. & LEUENBERGER, C. 2011: Analysis of ratios in mul-
tivariate morphometry. – Systematic Biology 60: 813-825. 

BROCK, G., PIHUR, V., DATTA, S. & DATTA, S. 2008: clValid, an 
R package for cluster validation. – Journal of Statistical Soft-
ware 25: 1-22. 

CREMER, S., UGELVIG, L.V., DRIJFHOUT, F.P., SCHLICK-STEINER, 
B.C., STEINER, F.M., SEIFERT, B., HUGHES, D.P., SCHULZ, A., 
PETERSEN, K.S., KONRAD, H., STAUFFER, C., KIRAN, K., ESPA-

DALER, X., D'ETTORRE, P., AKTAÇ, N., EILENBERG, J., JONES, 
G.R., NASH, D.R., PEDERSEN J.S. & BOOMSMA J.J. 2008: The 
evolution of invasiveness in garden ants. – Public Library of 
Science One 3: e3838. 

CSŐSZ, S., RADCHENKO, A. & SCHULZ, A. 2007: Taxonomic re-
vision of the Palaearctic Tetramorium chefketi species com-
plex (Hymenoptera: Formicidae). – Zootaxa 1405: 1-38. 

CSŐSZ, S. & SCHULZ, A. 2010: A taxonomic review of the Pa-
laearctic Tetramorium ferox species-complex (Hymenoptera: 
Formicidae). – Zootaxa 2401: 1-29. 

CSŐSZ, S. & SEIFERT, B. 2003: Ponera testacea EMERY, 1895 
stat.nov. – a sister species of P. coarctata (LATREILLE, 1802) 
(Hymenoptera: Formicidae). – Acta Zoologica Academiae Sci-
entarum Hungaricae 49: 201-214. 

DAY, W.H.E. & EDELSBRUNNER, H. 1984: Efficient algorithms for 
agglomerative hierarchical clustering method. – Journal of Clas-
sification 1: 7-24. 

EDWARDS, R.J. & PARKER, J.D. 2011: UPGMA worked example. 
– <http://www.southampton.ac.uk/~re1u06/teaching/upgma/>, 
retrieved in May 2012. 

FELTENS, R., GÖRNER, R., KALKHOF, S., GRÖGER-ARNDT, H. & VON 
BERGEN, M. 2010: Discrimination of different species from the 
genus Drosophila by intact protein profiling using matrix-as-
sisted laser desorption ionization mass spectrometry. – BioMed 
Central Evolutionary Biology 10: 95. 

FERREIRA, R.S., POTEAUX, C., DELABIE, J.H.C., FRESNEAU, D. 
& RYBAK, F. 2010: Stridulations reveal cryptic speciation in 
neotropical sympatric ants. – Public Library of Science One 5: 
e15363. 

GALIMBERTI, A., SPADA, M., RUSSO, D., MUCEDDA, M., AGNELLI, 
P., CROTTINI, A., FERRI, E., MARTINOLI, A. & CASIRAGHI, M. 
2012: Integrated operational taxonomic units (IOTUs) in echo-
locating bats: a bridge between molecular and traditional taxo-
nomy. – Public Library of Science One 7: e40122. 

GOLOBOFF, P.A., MATTONI, C.I. & QUINTEROS, A.S. 2006: Con-
tinuous characters analyzed as such. – Cladistics 22: 589-601. 

GOTZEK, D., BRADY, S.G., KALLAL, R.J. & LAPOLLA, J.S. 2012: 
The importance of using multiple approaches for identifying 
emerging invasive species: the case of the rasberry crazy ant in 
the United States. – Public Library of Science One 7: e45314. 

HARTIGAN, J.A. & WONG, M.A. 1979: A K-Means clustering al-
gorithm. – Applied Statistics 28: 100-108. 

KAUFMAN, L. & ROUSSEEUW, P.J. 1990: Finding groups in data: 
an introduction to cluster analysis. – John Wiley and Sons, New 
York, pp. 342. 



 14 

KLINGENBERG, C.P. 2011: MorphoJ: an integrated software pack-
age for geometric morphometrics. – Molecular Ecology Resour-
ces 11: 353-357. 

KRUSKAL, J.B. 1964: Nonmetric multidimensional scaling: a nu-
merical method. – Psychometrika 29: 115-129. 

KULMUNI, J., SEIFERT, B. & PAMILO, P. 2010: Segregation distor-
tion causes large-scale differences between male and female 
genomes in hybrid ants. – Proceedings of the National Acade-
my of Sciences of the United States of America 107: 7371-7376. 

LACHENBRUCH, P. & MICKEY,M. 1968: Estimation of error rates 
in discriminant analysis. – Technometrics 10: 1-11. 

LEGENDRE, P. & LEGENDRE, L. 1998: Numerical ecology. – El-
sevier, Amsterdam, 853 pp. 

LESAFFRE, E., WILLEMS, J.L. & ALBERT, A. 1989: Estimation of 
error rate in multiple group logistic discrimination. The ap-
proximate leaving-one-out method. – Communication in Statis-
tics: Theory and Methods 18: 2989-3007. 

LLOYD, S. 1982: Least squares quantization in PCM. – IEEE 
Transactions on Information Theory 28: 129-137. 

MAECHLER, M., ROUSSEEUW, P., STRUYF, A., HUBERT, M. & HOR-
NIK, K. 2012: Cluster: cluster analysis basics and extensions. R 
package version 1.14.3. – <http://CRAN.R-project.org/package 
=cluster>, retrieved in October 2012. 

MODER, K., SCHLICK-STEINER, B.C., STEINER, F.M., CREMER, S., 
CHRISTIAN, E. & SEIFERT, B. 2007: Optimal species distinc-
tion by discriminant analysis: comparing established methods 
of character selection with a combination procedure using ant 
morphometrics as a case study. – Journal of Zoological Sys-
tematics and Evolutionary Research 45: 82-87. 

NASCIMENTO, D.G., RATES, B., SANTOS, D.M., VERANO-BRAGA, 
T., BARBOSA-SILVA, A., DUTRA, A.A.A., BIONDI, I., MARTIN-
EAUCLAIRE, M.F., LIMA, M.E.D. & PIMENTA, A.M.C. 2006: 
Moving pieces in a taxonomic puzzle: venom 2D-LC / MS and 
data clustering analyses to infer phylogenetic relationships in 
some scorpions from the Buthidae family (Scorpiones). – Tox-
icon 47: 628-639. 

ODONG, T.L., VAN HEERWAARDEN, J., JANSEN, J., VAN HINTUM, 
T.J.L. & VAN EEUWIJK, F.A. 2011: Determination of genetic 
structure of germplasm collections: Are traditional hierarchi-
cal clustering methods appropriate for molecular marker data? 
– Theoretical and Applied Genetics 123: 195-205. 

PUSCH, K., SEIFERT, B., FOITZIK, S. & HEINZE, J. 2006: Distribu-
tion and genetic divergence of two parapatric sibling ant spe-
cies in Central Europe. – Biological Journal of the Linnean So-
ciety 88: 223-234. 

R DEVELOPMENT CORE TEAM 2012: R: a language and environ-
ment for statistical computing. – R Foundation for Statistical 
Computing, Vienna, Austria. – <http://www.R-project.org/>, re-
trieved in March 2013. 

ROSS, K.G., GOTZEK, D., ASCUNCE, M.S. & SHOEMAKER, D.D. 
2010: Species delimitation: a case study in a problematic ant 
taxon. – Systematic Biology 2010: 162-184. 

ROUSSEEUW, P., STRUYF, A., HUBERT, M. & MAECHLER, M. 2012: 
Cluster: cluster analysis extended Rousseeuw et al. R package 
version 1.14.2. – <http://CRAN.R-project.org/package=cluster/>, 
retrieved in October 2012. 

ROUSSEEUW, P.J. 1986: A visual display for hierarchical classi-
fication. In: DIDAY, E., ESCOUFIER, Y., LEBART, L., PAGES, J., 
SCHEKTMAN, Y. & TOMASSONE, R. (Eds.): Data analysis and 
informatics 4. – Elsevier, Amsterdam, pp. 743-748.  

SCHLICK-STEINER, B.C., SEIFERT, B., STAUFFER, C., CHRISTIAN 
E, CROZIER, R.H. & STEINER, F.M. 2007: Without morphology, 
cryptic species stay in taxonomic crypsis following discovery. 
– Trends in Ecology & Evolution 22: 391-392. 

SCHLICK-STEINER, B.C., STEINER, F.M., SEIFERT, B., STAUFFER, 
C., CHRISTIAN, E. & CROZIER, R.H. 2010: Integrative taxon-
omy: a multi-source approach to exploring biodiversity. – An-
nual Review of Entomology 55: 421-438. 

SEIFERT, B. 1984: A method for differentiation of the female castes 
of Tapinoma ambiguum EMERY and Tapinoma erraticum (LA-
TREILLE) and remarks on their distribution in Europe north of 
the Mediterranean Region. – Faunistische Abhandlungen Mu-
seum Tierkunde Dresden 11: 151-155. 

SEIFERT, B. 1988: A revision of the European species of the ant 
subgenus Chthonolasius. – Entomologische Abhandlungen 
Museum Tierkunde Dresden 51: 143-180. 

SEIFERT, B. 1991: Lasius platythorax n.sp., a widespread sibling 
species of Lasius niger. – Entomologia Generalis 16: 69-81. 

SEIFERT, B. 1992: A taxonomic revision of the Palaearctic mem-
bers of the ant subgenus Lasius s.str. (Hymenoptera: Formi-
cidae). – Abhandlungen und Berichte des Naturkundemuse-
ums Görlitz 66: 1-67. 

SEIFERT, B. 1999: Interspecific hybridisations in natural popula-
tions of ants by example of a regional fauna (Hymenoptera: 
Formicidae). – Insectes Sociaux 46: 45-52. 

SEIFERT, B. 2000: A taxonomic revision of the ant subgenus Cop-
toformica MUELLER, 1923. – Zoosystema (Paris) 22: 517-568. 

SEIFERT, B. 2003a: The ant genus Cardiocondyla (Insecta: Hyme-
noptera: Formicidae) – a taxonomic revision of the C. elegans, 
C. bulgarica, C. batesii, C. nuda, C. shuckardi, C. stam-
buloffii, C. wroughtonii, C. emeryi, and C. minutior species 
groups. – Annalen des Naturhistorischen Museums Wien, Se-
rie B, 104: 203-338. 

SEIFERT, B. 2003b: A taxonomic revision of the Formica cinerea 
group (Hymenoptera: Formicidae). – Abhandlungen und Be-
richte des Naturkundemuseums Görlitz 74: 245-272. 

SEIFERT, B. 2004: Hypoponera punctatissima (ROGER) and H. 
schauinslandi (EMERY) – two morphologically and biologically 
distinct species (Hymenoptera: Formicidae). – Abhandlungen 
und Berichte des Naturkundemuseums Görlitz 75: 61-81. 

SEIFERT, B. 2005: Rank elevation in two European ant species: 
Myrmica lobulicornis NYLANDER, 1857, stat.n. and Myrmica 
spinosior SANTSCHI, 1931, stat.n. (Hymenoptera: Formicidae). 
– Myrmecologische Nachrichten 7: 1-7. 

SEIFERT, B. 2006a: Temnothorax saxonicus (SEIFERT, 1995) stat. 
n., comb.n. – a parapatric, closely-related species of T. sordi-
dulus (MÜLLER, 1923) comb.n. and description of two new 
closely-related species, T. schoedli sp.n. and T. artvinense sp.n., 
from Turkey (Hymenoptera: Formicidae). – Myrmecologische 
Nachrichten 8: 1-12. 

SEIFERT, B. 2006b: Social cleptogamy in the ant subgenus Chtho-
nolasius – survival as a minority. – Abhandlungen und Be-
richte des Naturkundemuseums Görlitz 77: 251-276. 

SEIFERT, B. 2007: Die Ameisen Mittel- und Nordeuropas. – lutra, 
Tauer, 368 pp. 

SEIFERT, B. 2008: Removal of allometric variance improves spe-
cies separation in multi-character discriminant functions when 
species are strongly allometric and exposes diagnostic char-
acters. – Myrmecological News 11: 91-105. 

SEIFERT, B. 2009: Cryptic species in ants (Hymenoptera: Formi-
cidae) revisited: We need a change in the alpha-taxonomic ap-
proach. – Myrmecological News 12: 149-166. 

SEIFERT, B. 2011: A taxonomic revision of the Eurasian Myrmica 
salina species complex (Hymenoptera: Formicidae). – Soil Or-
ganisms 83: 169-186. 

SEIFERT, B. 2012a: Clarifying naming and identification of the 
outdoor species of the ant genus Tapinoma FÖRSTER, 1850 (Hy-
menoptera: Formicidae) in Europe north of the Mediterranean 



 15 

region with description of a new species. – Myrmecological 
News 16: 139-147. 

SEIFERT, B. 2012b: A review of the West Palaearctic species of 
the ant genus Bothriomyrmex EMERY, 1869 (Hymenoptera: For-
micidae). – Myrmecological News 17: 91-104. 

SEIFERT, B. & GOROPASHNAYA, A. 2004: Ideal phenotypes and 
mismatching haplotypes – errors of mtDNA treeing in ants 
(Hymenoptera: Formicidae) detected by standardized morpho-
metry. – Organisms, Diversity & Evolution 4: 295-305. 

SEIFERT, B., KULMUNI, J. & PAMILO, P. 2010: Independent hy-
brid populations of Formica polyctena X rufa wood ants (Hy-
menoptera: Formicidae) abound under conditions of forest frag-
mentation. – Evolutionary Ecology 24: 1219-1237. 

SEIFERT, B., SCHLICK-STEINER, B.C. & STEINER, F.M 2009: Myr-
mica constricta KARAVAJEV, 1934 – a cryptic sister species of 
Myrmica hellenica FINZI, 1926 (Hymenoptera: Formicidae). – 
Soil Organisms 81: 53-76. 

SEIFERT, B. & SCHULTZ, R. 2009a: A taxonomic revision of the 
Formica rufibarbis FABRICIUS, 1793 group (Hymenoptera: For-
micidae). – Myrmecological News 12: 255-272. 

SEIFERT, B. & SCHULTZ, R. 2009b: A taxonomic revision of the 
Formica subpilosa RUZSKY, 1902 group (Hymenoptera: For-
micidae). – Myrmecological News 12: 67-83. 

SEPPÄ, P., HELANTERÄ, H., TRONTTI, K., PUNTTILA, P., CHER-
NENKO, A., MARTIN, S.J. & SUNDSTRÖM, L. 2011: The many 
ways to delimit species: hairs, genes and surface chemistry. – 
Myrmecological News 15: 31-41. 

STEINER, F.M., SCHLICK-STEINER, B.C. & SEIFERT, B. 2009: Mor-
phology-based taxonomy is essential to link molecular research to 
nomenclature. – Contributions to Natural History 12: 1295-1315. 

STEINER, F.M., SEIFERT, B., GRASSO, D.A., LE MOLI, F., ART-
HOFER, W., STAUFFER, C., CROZIER, R.H. & SCHLICK-STEINER, 
B.C. 2011: Mixed colonies and hybridisation of Messor har-
vester ant species (Hymenoptera: Formicidae). – Organisms Di-
versity & Evolution 11: 107-134. 

STEINER, F.M., SEIFERT, B., MODER, K. & SCHLICK-STEINER, 
B.C. 2010: A multisource solution for a complex problem in 
biodiversity research: description of the cryptic ant species Te-
tramorium alpestre sp.n. (Hymenoptera: Formicidae). – Zoo-
logischer Anzeiger 249: 223-254. 

STRUYF, A., MIA, H. & ROUSSEEUW, P.J. 1997: Integrating ro-
bust clustering techniques in S-PLUS. – Computational Statis-
tics & Data Analysis 26: 17-37. 

TABACCHI, M., MANTEGAZZA, R., SPADA, A. & FERRERO, A. 
2006: Morphological traits and molecular markers for classifi-
cation of Echinochloa species from Italian rice fields. – Weed 
Science 54: 1086-1093. 

TUKEY, J.W. 1977: Exploratory Data Analysis. – Addison Wes-
ley Longman Inc., Reading, MA, 688 pp. 

WARD, J.H. 1963: Hierarchical grouping to optimize an objective 
function. – Journal of the American Statistical Association 48: 
236-244. 

WARD, P.S. & SUMNICHT, T.P. 2012: Molecular and morpholo-
gical evidence for three sympatric species of Leptanilla (Hy-
menoptera: Formicidae) on the Greek island of Rhodes. – Myr-
mecological News 17: 5-11. 

WIENS, J.J. 2000: Reconstructing phylogenies from allozyme data: 
comparing method performance with congruence. – Biologi-
cal Journal of the Linnean Society 70: 613-632.  

 
 
 


	Introduction – morphology-based alpha-taxonomy,  nomenclature and species delimitation problems
	Material and Methods
	Preparation of the data matrix by a hypothesis-free linear discriminant analysis
	Agglomerative Nesting (AGNES)
	K-Means clustering
	NMDS ordination
	The selection of data sets for performance testing
	Formation of Improved Species Hypotheses in the test data sets
	Formation of Advanced Species Hypothesis as interaction between clustering and an iterative LDA operating on the level of individual workers
	Results and Discussion
	Agreement of Advanced Species Hypotheses with published findings
	Comparing the performance of the tested clustering methods
	The four clustering methods are not effective tools for analysis of hybridization
	Conclusion and recommendation
	Acknowledgements
	References

